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Abstract
To assess dynamic loads, large offshore wind turbines need detailed and reliable statistical
information on the inflow turbulence.We present a model that includes low frequencies down
to ∼ 1 hr−1 using the observed S( f ) ∝ f −5/3 in that range. The presented model contains
a parameter representing the anisotropy of the two-dimensional, incompressible turbulence,
and it assumes the low-frequency fluctuations to be homogeneous in the vertical direction.
Combined with a three-dimensional model for the smaller scales, the model can predict
correlations between different points. We have validated the model against two offshore
wind data sets: a nacelle-mounted, forward-looking Doppler lidar with four beams at the
Hywind Scotland offshore wind farm and sonic anemometer measurements at the FINO1
research platform in the North Sea. One-point auto spectra and two-point cross spectra were
calculated after splitting the data into different atmospheric stability classes. The relative
strength of the 2D low-frequency fluctuations to the 3D fluctuations was higher under stable
conditions. The combined 2D+3D model was able to fit the measured spectra with good
accuracy and could then predict the two-point cross spectra, co-coherences, and phase angles
between wind fluctuations at different lateral and vertical separations. Good agreement was
found between the measured and predicted values, albeit with exceptions. The model can
generate stochastic wind fields for investigating wake meandering in wind farms or dynamic
loads on floating wind turbines.

Keywords 2D turbulence · Coherence estimation · Low-frequency fluctuations · Lidar
measurements · Marine boundary layer

1 Introduction

The growth in the offshore wind energy sector and technology maturity have led to a signif-
icant increase in the size of modern wind turbines. The installation of wind turbines having
up to 250m rotor diameter is now state-of-the-art. For such large rotors, the incoming wind
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field may not be uniform, and it can have large spatial and temporal variations. This can lead
to a significant impact on the blade and tower loads and power performance of large wind
turbines. Large offshore turbines have lower natural frequencies and can get easily excited
by the low-frequency fluctuations in the wind. The response of a floating wind turbine to
low-frequency wind fluctuations is even stronger due to the more degrees of freedom of the
floater platform and its low eigenfrequencies. In two separate studies, Nybø et al. (2021)
and Nybø et al. (2022) analyzed the impact of low-frequency wind fluctuations on a fixed
bottom DTU 10 MW reference wind turbine and a floating IEA 15 MW reference wind
turbine, respectively. Their studies revealed that wind fluctuations lower than 0.01 Hz have a
strong impact on the tower bottom fore-aft and blade flap-wise damage equivalent moments.
Doubrawa et al. (2019) andBachynski and Eliassen (2019) also highlighted the importance of
low-frequency wind fluctuations on the floating wind turbine’s global motion and increased
excitation of components such as mooring lines.

The load estimation studies of wind turbines generally use turbulence wind field simula-
tion tools to generate stochastic and realistic wind fields. The International Electrotechnical
Commission (IEC) standard 61400-1:2019 (IEC 2019) suggests two input wind field models,
i.e., the Kaimal spectrum model (Kaimal et al. 1972) with exponential coherence function
(Davenport 1977), and the Uniform Shear turbulence model of Mann (1994), see also Mann
(1998). These models are initially made for high-frequency wind fluctuations and neutral
atmospheric conditions. These twomodels often differ in predicting thewind turbine response
to different design load conditions due to differences in their inherent physics (Bachynski
and Eliassen 2019; Nybø et al. 2020, 2021). To analyze the effect of low-frequency fluctua-
tions on wind turbine response, Proper Orthogonal Decomposition (POD) [(see Eliassen and
Andersen (2016) and Saranyasoontorn and Manuel (2005)] or low-pass filter techniques are
usually employed to filter out the high-frequency fluctuations. These techniques often bring
large statistical uncertainty in the loads’ analysis. Thus, there is a need for a model that can
reliably predict the low-frequency fluctuations corresponding to that of a marine atmosphere.

Numerous studies have comprehensively examined the energy spectrum across a wide
range of frequencies or wavenumbers. Among the most noteworthy are the works of Vin-
nichenko (1970); Kraichnan (1967), and Gage and Nastrom (1986) where it was established
through experimental data that the energy spectrum E(k) in the mesoscale 2D turbu-
lence follows a power-law scaling of k−5/3 with k representing the wavenumber. From
the structure functions analysis of the wind data recorded through commercial aircraft
flights, Lindborg (1999) derived a formulation for one-dimensional energy spectrum i.e.
E1(k) = d1k−5/3 + d2k−3, where d1 and d2 are scaling factors. In this relation, the first
and second terms represent the energy distribution in the mesoscales and synoptic scales,
respectively. More recent studies (Courtney and Troen 1990; Högström et al. 2002; Larsén
et al. 2013) focus on the divide between mesoscale and microscale turbulence and partic-
ularly on the presence or absence of a spectral gap. Larsén et al. (2013) presented a wind
spectrum relation analogous to that of Lindborg’s energy spectrum relation expressed as
S( f ) = a1 f −5/3 + a2 f −3, where f is the frequency, and a1 and a2 act as the scaling fac-
tors for the mesoscale and synoptic turbulence terms, respectively. This relation exhibited
a very good agreement with the longitudinal wind component spectrum recorded at two
offshore sites. Expanding upon this work, Larsén et al. (2016) employed the same relation
for modeling synoptic and mesoscale turbulence alongside the Kaimal spectrum model for
microscale turbulence to characterize the full-range spectrum of the boundary layer winds
at two sites in Denmark. They observed that a spectral gap exists between low-frequency
and high-frequency fluctuations, and its width depends on the relative strength of mesoscale
and microscale turbulence. Furthermore, Larsén et al. (2021) demonstrated that the lateral
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wind velocity component could also be effectively represented in the low-frequency range
using the same spectral relation. Cheynet et al. (2018) also utilized this model to fit the low-
and high-frequency wind fluctuations measured at the FINO1 research platform in the North
Sea and found a good agreement between the model and the observed data. Notably, their
study highlighted that the spectral gap is not visible under unstable and neutral conditions
but becomes distinct in the presence of strong stratification in the atmosphere.

This article presents a model for characterizing low-frequency fluctuations in longitudinal
and lateral wind components based on the two-dimensional spectral velocity tensor. The
energy spectrum in the mesoscale range follows the k−5/3 scaling. In addition, two other
parameters are introduced in this formulation: a characteristic length scale corresponding
to the peak of mesoscale turbulence and an anisotropy parameter that describes the spectral
distortion in thewavenumber domain. In contrast to the previously described one-dimensional
low-frequency spectral relationship, the model presented in this article operates in a two-
dimensional domain, enabling an investigation of two-point statistics. The low-frequency
turbulence model is validated against two distinct sets of offshore measurements. The first
dataset comprises line-of-sight (LOS) wind component measurements made by a nacelle-
mounted lidar on a 6-MW floating turbine at the Hywind Scotland wind farm. This dataset
provides a unique opportunity to model and predict the lateral and vertical co-coherences
because of multiple lidar beams measuring at lateral separations ranging up to 206m and
vertical separations ranging up to 72m. The second dataset is the multiple sonic anemometer
measurements at various heights above mean sea level from the FINO1 research platform in
the North Sea. The FINO1 measurements are also used to predict the co-coherences at low
frequencies, with a particular focus on vertical separations of 20m and 40m.

This article is organized into the following sections: First, the anisotropic, low-frequency
turbulence model is presented. In the next two sections, the model is validated against two
sets of measurements, followed by the Discussion and Conclusion sections.

2 Anisotropic 2D TurbulenceModel

The two-dimensional spectral velocity tensor is the Fourier transform of covariance ten-
sor R2D

i j (x) = 〈
ui (x′)u j (x′ + x)

〉
where x = (x1, x2) is a horizontal separation vector

and, because of homogeneity, x′ is arbitrary. It follows from the Wiener–Khinchin theorem
(Batchelor 1953) that:

φi j (k1, k2) =
∫ ∞

−∞

∫ ∞

−∞
R2D
i j (x1, x2)exp(−ιk · x)dx1dx2

= 〈û∗
i (k1, k2)û j (k1, k2)〉, (1)

where ∗ indicates the complex conjugate. Furthermore, according to Batchelor (1953), a
two-rank, isotropic, two-dimensional velocity tensor has the form:

φi j (k1, k2) = f (k)ki k j + g(k)δi j (i, j = 1, 2) , (2)

where f and g are functions of the length of the horizontal wavenumber vector k = |k| =√
k21 + k22 and δi j is the Kronecker delta. Assuming that the two-dimensional flow is incom-

pressible implies kiφi j = 0. Incompressibility in the horizontal plane is actually not true for
atmospheric flows, but for larger scales, it may be a good approximation. Two-dimensional
incompressibility suggests that:

123



1 Page 4 of 37 A. H. Syed, J. Mann

k2 f (k) = −g(k). (3)

If we define the two-dimensional energy spectrum E(k) by g(k) = E(k)/(πk), then the
spectral tensor becomes:

φi j (k1, k2) = E(k)

πk

(
δi j − ki k j

k2

)
. (4)

Let us now assume that the energy spectrum is given by:

E(k) = ck3
(
L−2
2D + k2

)7/3 , (5)

where c is a constant and a scaling parameter, and L2D is the corresponding length scale of
2D fluctuations. The particular shape of (5) is inspired by von Kármán (1948). The high k
range of the spectrum ensures E(k) ∝ k−5/3 as k → ∞ while the low k form E(k) ∝ k3

guarantees that the integral length scale is non-zero and finite.1 The isotropic spectral tensor
would consequently be:

φi j (k) = f 2(k)

(
k22 −k1k2

−k1k2 k21

)
, (6)

where f is only a function of k = |k| and f 2(k) = (E(k)/π) · k−3. The one-dimensional
spectra as functions of k1 can be calculated as:

F2D
11 (k1) =

∫ ∞

−∞
φ11(k1, k2)dk2

=
∫ ∞

−∞
c

π
(
L−2
2D + k2

)7/3 k
2
2dk2

= c
9Γ ( 56 )

8
√

πΓ ( 13 )

(
L−2
2D + k21

)−5/6
, (7)

F2D
22 (k1) =

∫ ∞

−∞
φ22(k1, k2)dk2

= c
15Γ ( 56 )k

2
1

8
√

πΓ ( 13 )

(
L−2
2D + k21

)−11/6
, (8)

where Γ is the Gamma function. We can obtain the variance as:

σ 2 = σ 2
11 = σ 2

22 = 9

8
cL2/3

2D . (9)

The energy spectrum in (5) can now be represented as:

E(k) = 8σ 2L2D

9

(kL2D)3

(
1 + (kL2D)2

)7/3 , (10)

where c is substituted with (8σ 2L−2/3
2D )/9. The symbol σ 2 is the variance of any horizontal

velocity component and the integral of Eh from 0 to ∞ is exactly σ 2 which is also equal to
the kinetic energy (ignoring the mass, i.e. half the sum of the two component variances).

1 This can be seen from the expressions (7) and (8) where the spectrum goes to a constant for k → 0
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We can extend this model to include scale-independent anisotropy, where the incom-
pressible, homogeneous, two-dimensional velocity field can be written as a sum of Fourier
modes:

û(k) exp(ιk · x) , (11)

where k = (k1, k2) and x are only two-dimensional. The Fourier amplitudes can be written
as:

û(k) = a k̂ f (k) , (12)

where a is a random, complex, Gaussian variable with zero mean and unit variance (
〈|a|2〉 =

〈a∗a〉 = 〈
(a)2
〉 + 〈�(a)2

〉 = 1), k̂ is the vector (−k2, k1) perpendicular to k, and f is now
a real, scalar function of the vector k and not as before in (6) only a function of k. Now we
can alter the function f to make the spectral tensor anisotropic in a scale-independent way:

f (k1, k2) = f (κ) (13)

where:

κ2 = 2(k21 cos
2 ψ + k22 sin

2 ψ) (14)

with 0 < ψ < π/2 is the anisotropy parameter. The anisotropic spectral tensor would be:

φi j (k1, k2) = 8σ 2L2
2D

9π

1
(
1 + κ2L2

2D

)7/3 L
2
2D

(
k22 −k1k2

−k1k2 k21

)
. (15)

When ψ = π/4, then κ = k and we get the isotropic 2D spectra (6). Figure1 presents the
two dimensional spectra φ11 and φ22 for various values of ψ . Notice the effect of anisotropy
on the 2D spectra, as reducing the magnitude of the anisotropy parameterψ makes φ11 much
more energetic than φ22. The inverse is true for values of ψ greater than 45◦.

The anisotropic one-dimensional spectra become:

F2D
11 (k1) = σ 2L2D

Γ
(
5
6

)

23/2π1/2Γ
( 1
3

)
sin3 ψ

ρ−5/3 , (16)

and:

F2D
22 (k1) = σ 2L2D

5Γ
(
5
6

)

3 · 21/2π1/2Γ
( 1
3

)
sinψ

k21L
2
2D

ρ11/3 , (17)

where:

ρ2 = 1 + 2k21L
2
2D cos2 ψ . (18)

Due to anisotropy the variances of longitudinal and transverse components are different and
can be shown to become:

σ 2
11 = σ 2

4 cosψ sin3 ψ
, (19)

σ 2
22 = σ 2

4 cos3 ψ sinψ
, (20)
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Fig. 1 Two dimensional spectra Φ11 and Φ22 as a function of a ψ = 45◦, b ψ = 30◦, and c ψ = 60◦ as
described in 15. Here the length scale L is set equal to 103 m, and the variance σ 2 is 1m2s−2
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Fig. 2 Model component spectra from Eqs. (16) and (17). The black curves are the isotropic spectra while the
red curves have σ 2

11 < σ 2
22 and the blue have σ 2

11 > σ 2
22, the latter being the model realistic

and:

σ 2
11

σ 2
22

= cot2 ψ , (21)

where σ 2 is the variance if the spectra are isotropic (9). Figure2 illustrates the effect of
anisotropy on one-dimensional spectra of longitudinal and transverse components. We can
observe the change in variance σ 2 with respect to the variation in the anisotropy parameter
ψ . At ψ = 30◦, the variance of the longitudinal component is higher. The opposite is true
forψ = 60◦ where σ 2

22 is many times higher than σ 2
11. At ψ = 45◦, both variances are equal,

and the turbulence is isotropic.
It should be noted that for the isotropic case:

F2D
11 (k2) = F2D

22 (k1) , (22)

and:

F2D
22 (k2) = F2D

11 (k1) . (23)

For other values of ψ , one-dimensional spectra in terms of k2 can be obtained by integrating
the anisotropic spectral tensor in (15). Similarly, the normalized lateral cross spectra can be
computed analytically as:

χ11(k1,Δy)

F2D
11 (k1)

= πρμ5/6

6 · 21/4Γ
(
5
6

)
sin11/6 ψL2D

(
2L2D sinψ

ρ

{
3I− 5

6

(
μ√

2 sinψ

)

−8I 5
6

(
μ√

2 sinψ

)}

+ 3 · 21/2Δy

{
I 1
6

(
μ√

2 sinψ

)

−I 11
6

(
μ√

2 sinψ

)})
,

(24)
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and:

χ22(k1,Δy)

F2D
22 (k1)

= 3

5 · 23/4 sin11/6 ψΓ (5/6)
μ11/6K 11

6

(
μ√

2 sinψ

)
, (25)

where μ = Δyρ/L2D , and Δy is the lateral separation distance. In is the modified Bessel
function of the first kind, and Kn is the modified Bessel function of the second kind.

2.1 2D Turbulence Model with Attenuation at High Frequencies

The low-frequency turbulence model described above can have an unwanted effect on the
high-frequency turbulence spectra. If not attenuated at higher frequencies, the 2D turbulence
adds to the 3D turbulence and contaminates the classical turbulence ratios at high frequencies.
Especially in the inertial sub-range, the turbulence is isotropic and follows a power law (Pope
2000), which is distorted if the 2D turbulence is not attenuated at higher frequencies. The
assumption of two-dimensionality hinges on the fact that if an eddy is much larger than the
extent of the boundary layer zi , then it can only be horizontal. Therefore it makes sense to
attenuate the two-dimensional spectrum for κ > 1/zi . If we define the attenuation factor as:

1

1 + κ2z2i
, (26)

where zi is the boundary-layer height, the attenuated energy spectrum would become:

E(κ) = cκ3

(
L−2
2D + κ2

)7/3
1

1 + κ2z2i
. (27)

Here the attenuation factor is a special kind of activation function (similar to an inverse sig-
moid function) that has an “inverse S" shape. This function ensures that the energy spectrum
smoothly drops to zero for wavenumbers greater than 1/zi . This drop is accelerated due to
an increased negative slope of the spectrum for κ > 1/zi i.e., E(κ) ∝ κ−11/3. Other sigmoid
functions like a hyperbolic tangent or a logistic function can also be used as an attenuation
factor. The one-dimensional spectra F11 and F22 can be obtained from the attenuated energy
spectrum using a similar method as outlined earlier. The final expressions are described in
Appendix 1.

3 Model Validation with Offshore Nacelle Lidar Data

A nacelle-mounted WindIris wind lidar (Vaisala) recorded line-of-sight (LOS) wind speed
data on the HS4 wind turbine in the Hywind Scotland offshore wind farm. The location of
the HS4 turbine is shown in Fig. 3. The HyWind Scotland turbines have a power rating of 6
MW with a hub height of 98.4 m and a rotor diameter of 154m. The lidar measured LOS
velocities from 4 different beams oriented at different azimuth and tilt angles. The WindIris
measures at 10 different range gates at distances from 50 to 400m for each LOS. The four
beams have fixed azimuth and tilt angles, φ = 15◦ and θ = 5◦ respectively. A schematic of
the wind turbine and the orientation of the four lidar beams is shown in Fig. 4. Due to a high
thrust force acting on the wind turbine close to the rated wind speed, the lower two beams
(Beams 3 and 4) are mostly horizontal at these wind speeds (Angelou et al. 2023).
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Fig. 3 Hywind Scotland Offshore wind farm and the location of HS4 turbine on which the WindIris lidar is
mounted

Fig. 4 a Schematic showing the orientation of four lidar beams with respect to the incoming wind flow
assuming that the incoming flow is in positive x direction. b and c displays the side and top views, respectively

3.1 Data Processing

The measurements were available for 3months in total from September 2019 to November
2019. To have good-quality data and long stationary time series, we applied several filters to
the data set, which reduced the amount of available data considerably. A brief overview of
the filtering criteria is given in Table 1. The time to record LOS values at all 10 range gates
for a single beam took 1s, so the resulting data was measured at a frequency of 1/4 Hz. We
selected only those hours where the wind turbine was producing at least 100 kW. To ensure
that the flow is undisturbed and wake-free, we selected 1-hour periods where the mean wind
direction was southerly (90◦ ≤ wind direction ≤ 270◦). The LOS speed availability status
parameter was analyzed for every hour in the data set and only those hours with mean LOS
speed status > 90% at all 10 range gates were selected. Due to the induction effect of the
wind turbine, a reduction in upstream horizontal wind speed was observed. An upstream
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Table 1 The number of hours available after applying each data filtering criterion

Filtering criterion Year 2019

Total available 1779

With active power ≥ 100 kW 1553

Wake free directions (90◦ ≥ Wind Direction ≤ 270◦) 774

Lidar data availability > 90% at all 10 range gates 354

Upwind parameterization error < 0.15 m s−1 331

Periods containing at least 8 consecutive hours 210

Undisturbed wind speed stationarity check 186

Table 2 Details of selected periods after data processing

No Start time End time Length U∞ WD Rib class
[in Hours] [ms−1 ] [deg] measured

1 09-08 13:00:00 09-09 19:00:00 31 10.0 171.6 n

2 09-13 20:00:00 09-14 05:00:00 10 10.2 236.3 s

3 09-14 10:00:00 09-14 18:00:00 9 19.7 217.0 s

4 09-21 01:00:00 09-21 20:00:00 20 11.4 167.3 s

5 09-26 11:00:00 09-26 18:00:00 8 11.4 202.8 s

6 09-26 20:00:00 09-27 11:00:00 16 10.0 202.8 s

7 10-05 06:00:00 10-05 21:00:00 16 13.3 135.7 n

8 10-07 14:00:00 10-08 22:00:00 33 14.6 217.6 n

9 10-09 00:00:00 10-09 18:00:00 19 13.2 226.1 n

10 10-10 23:00:00 10-11 22:00:00 24 14.0 230.6 n

wind induction model described in Simley et al. (2016) was fitted to the measured LOS
values at all range gates. The procedure is described in detail in Angelou et al. (2023). To
ensure the homogeneity of the incoming flow, only those hours were selected where the error
between measurements and fit was less than 0.15 m s−1. Since we are trying to model the
spectrum at low frequencies (up to 1 hr−1), we require a large statistical significance at the
lower end of the spectrum. Therefore, we selected only those periods in the data set with at
least eight consecutive hours. The number of hours in each period is mentioned in Table 2.
Finally, each period was checked for undisturbed wind speed stationarity. The criterion to
define stationarity is described as follows: (1) First, a linear fit was applied to the mean
hourly speeds for each period, (2) The extreme values of the linear fit were compared with
the mean value of the data, (3) If the extreme values lie within 20% deviation from the mean,
the period was declared to be stationary or otherwise non-stationary. After applying all the
criteria, we are left with 186h (∼10% of the total available data) divided into 10 periods.
The starting and ending time stamps of these periods are described in Table 2 along with the
mean undisturbed wind speed U∞ and the mean wind direction obtained from SCADA.

Table 2 also describes the stability classes observed during each period. We estimated the
atmospheric stability using the bulk Richardson number Rib described as:

Rib = −gz (ΔT − zΓl)

TzU 2
z

, (28)
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Table 3 Atmospheric stability
classification based on Rib
number

Stability class Rib range

Very unstable (vu) < −0.1

Unstable (u) [−0.1,−0.025)

Neutral (n) [−0.025, 0.025]
Stable (s) (0.025, 0.1]
Very stable (vs) > 0.1

where g is the Earth’s gravitational acceleration, z is the height at which temperature Tz and
wind speed Uz measures are recorded (in this case the hub height), Γl = 0.0098 K m−1 is
the adiabatic lapse rate, and ΔT = Tsea − Tz , being Tsea the sea surface temperature. The
Rib class from measurements was evaluated using HS4 SCADA and sea surface temperature
measurements. For every half-hour interval in each period, a Rib value was obtained. The
overall stability for the whole period is computed by obtaining the mode value of stability
classes during each period. The stability classification based on Rib number is described in
Table 3. From Table 2, we can note that the atmospheric conditions during half of the selected
periods were stable, and the rest were observed as neutral.

3.2 Spectral Analysis

To fit the model to measured spectra, we computed the mean LOS spectra at all range gates
for Beams 3 and 4. The frequency spectra were computed for 1-hr time series chunks. Using
Taylor’s frozen turbulence hypothesis, the spectra were converted into a wavenumber k1
domain. The combined 2D+3D modeled spectra have been fitted to the mean spectra of
Beams 3 and 4 using the downhill simplex algorithm (available in almost all high-level
programming languages). Details on how to combine the 2D and 3D spectra models for
nacelle lidar measurements are given in Appendix 2. The anisotropy parameter ΓM of the 3D
Mann spectral model was fixed at 2.5, a value in themiddle of the range of typically estimated
values at the FINO1 platform in the North Sea. The other two parameters αε2/3, and L3D

were evaluated by fitting the spectra given by (A15). The fitting process also evaluates the
scaling parameter c in the 2D spectral model. Figure5 shows the measured LOS spectra for
all 10 periods mentioned in Table 2. Since we did not observe any low-frequency fluctuations
peak in themeasured spectra, we assumed an infinite L2D for fitting purposes. The anisotropy
parameter for each fit was evaluated by reconstructing the u and v components from Beams
3 and 4 LOS. Assuming zero tilt due to the thrust force acting on the turbine, the two wind
components can be defined as:

u = LOS4 + LOS3
2 cosφ

, (29)

v = LOS4 − LOS3
2 sin φ

, (30)

where u and v are the longitudinal and transverse wind components, LOS3 and LOS4 are the
LOS speed measured by beams 3 and 4, respectively, and φ is the azimuth angle. From the
anisotropic extension of the 2D turbulence model and assuming k1 > L−1

2D , the anisotropy
parameter can be evaluated as:
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Fig. 5 Measured (solid blue curves) LOS spectra fitted with theoretical 2D + 3D spectra (dashed black curves),
and 3D spectra (dotted black curves) for the 10 periods mentioned in Table 2. The fitting parameters are also
mentioned in Table 4. The atmospheric stability during each period is also mentioned here: (n) represents
neutral conditions, and (s) represents stable conditions

ψ = arctan

(√
3

5

F22
F11

)

, (31)

where F11 and F22 are the one-dimensional spectrum of the longitudinal and transverse wind
components. The v component shows large variance (large magnitude at higher frequencies),
which is a result of the product of the ratio between the difference of two slightly noisy LOS
values to a small number from the sine of the opening angle (30). Since we are only interested
in the spectra at the lower frequencies,we can ignore this large and unrealistic variance in the v

component.ψ can be obtained by incorporating the spectral ratio Sv/Su at lower frequencies
(< 10−3 Hz) into (31). A summary of the three parameters obtained by the fitting process
(c, αε

2/3
, and L3D) is given in Table 4. Figure5 also shows the fitted 2D+3D spectra for
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Table 4 Spectral fitting results for each of the analyzed periods

Period Rib class ψ c αε2/3 L3D RMSE
[Deg] (×10−4) [m4/3s−2] (×10−2)[m4/3s−2] [m] (×10−2) [m2s−2]

1 n 30.9 1.6 1.3 58.0 0.32

2 s 28.0 5.9 1.4 38.2 1.61

3 s 25.4 6.1 21.1 15.4 2.63

4 s 23.6 2.7 5.6 15.8 1.04

5 s 25.7 2.4 8.7 4.5 0.49

6 s 32.6 5.9 4.7 9.6 0.36

7 n 26.4 1.7 2.4 82.4 0.84

8 n 26.4 3.5 3.9 61.8 0.77

9 n 33.5 3.9 2.5 52.9 0.82

10 n 26.9 6.5 3.8 44.2 0.77

each period in dashed lines. The accuracy of the fit is analyzed by computing the Root Mean
Square Error (RMSE) between the fitted and measured spectra. No strong correlation was
found between RMSE and atmospheric stability. However, having more hours in a certain
period can reduce the RMSE and provide a better fit, especially in the low-frequency part of
the spectrum. By observing the fitted and measured spectra, it is evident that there is a large
energy in the spectrum at lower frequencies relative to higher frequencies during periods with
stable stratification. A larger correlation was found between Rib class and the Mann model
length scale L3D , where much lower values (< 25 m) were found for stable stratification.
The parameters c and αε

2/3 are scaling parameters and do not impact the spectrum’s shape.
As a comparison, Fig. 5 also shows the 3D spectra fitted to the measured spectra. It is evident
that the 3D turbulence model fails to fit the low-wavenumber part of the spectra in all ten
periods shown in Fig. 5.

3.3 Lateral Co-coherences

Co-coherence is a measure of how much the wind turbulence is correlated at a certain fre-
quency or wavenumber between two points separated by a distance. Here we measure and
predict the co-coherence between the two WindIris beams pointing in different directions
and separated by distances ranging from 26m to 206m (see Fig. 6). We can now compare
the modeled co-coherence with the measured co-coherence between beams 3 and 4, where
m and n are unit vectors of the two beams:

co-cohmn(k1,Δy) = 
(χmn(k1,Δy))√
Fm(k1)Fn(k1)

. (32)

Figure 7 exhibits the measured and modeled co-coherences as a function of k1 for Period
6 and Period 7. For Period 6, when the atmosphere was stably stratified, we can observe
the effect on predicted co-coherences by including the low-frequency fluctuations (the 2D
turbulence) in the co-coherence modeling. Table 5 describes the summary of RMSE obtained
from predicted co-coherences for all 10 periods. Here, RMSE represents the mean of RMSE
values at all ten separation distances obtained by comparing the predicted and modeled
co-coherence at different lateral separations. For Period 6, a 24% reduction in RMSE was
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Fig. 6 On the left: WindIris Beams 3 and 4 configuration and the lateral distances between the two beams at
different range gates. On the right: Beams 2 and 4 configuration and the vertical distances between the two
beams at different range gates

Fig. 7 Measured and predicted lateral co-coherences as a function of k1 a for Period 6 and b for Period 7

observed by including the low-frequency fluctuations in the co-coherence prediction as com-
pared to just high-frequency 3D fluctuations. This can be observed from Fig. 7a, where there
is a large difference between the two prediction models, especially at low k1 values. Here,
the co-coherence prediction in the 3D case is made by c → 0 in the combined spectra fit. For
Period 7, when the atmosphere was neutral, we did not observe a large difference between the
two co-coherence prediction models because the turbulence spectrum here contains mostly

123



Model for Low-Frequency, Anisotropic Wind Fluctuations Page 15 of 37 1

Table 5 Summary of errors obtained from lateral co-coherence modeling

Period Rib class RMSE (2D + 3D Model) RMSE (3D Model) % Reduction
[–] [–] in RMSE

1 n 0.145 0.118 −22.4

2 s 0.138 0.202 31.8

3 s 0.123 0.141 13.0

4 s 0.092 0.153 40.0

5 s 0.124 0.143 13.8

6 s 0.105 0.138 24.3

7 n 0.135 0.123 −9.8

8 n 0.106 0.099 −7.8

9 n 0.119 0.109 −9.7

10 n 0.09 0.126 29.1

3D high-frequency turbulence. Although at lower k1 values, the spread in co-coherence val-
ues at different separations is better simulated by the 2D+3Dmodel. The RMSE, in this case,
is around 10% higher by including low-frequency fluctuations in the prediction. We can also
observe the comparison in Fig. 7b, where the measured co-coherence seems to have a better
match with the prediction model with just 3D turbulence.

Further analyzing Table 5 reveals that the reduction in errors of co-coherence modeling
by including both 2D low-frequency fluctuations and 3D high-frequency turbulence is quite
significant for stable stratification. For Periods 2, 3, 4, 5, and 6, we observed a large reduction
in RMSE of modeled co-coherence by incorporating the 2D fluctuations. This is because the
low-frequency part of the turbulence spectrum is much stronger during stable stratification
than neutral stratification. For neutral stratification, we even observed an increase in RMSE
for the former model, as observed in Periods 1, 7, 8, and 9. For the stable stratification cases,
the co-coherence at all separations tends to converge much closer to 1 at very low k1 values,
meaning the turbulence fluctuations are highly correlated at lower frequencies irrespective of
the lateral separation distance. The variation between co-coherences at different separations
is also not large at higher k1 values in the stable periods. For neutrally stratified cases, we
observe a large variation in co-coherence values for different separations at higher k1, and
the co-coherence values do not tend to converge at lower k1 values.

3.4 Vertical Co-coherences

To model co-coherence with vertical separation, we assume that the two lower beams are
completely horizontal due to the thrust force acting on the wind turbine. This assumption
is valid here because the wind speeds for the ten periods under study are close to the rated
wind speed of the turbine at which the positive pitch angle of the turbine compensates for
the negative tilt angle of lidar beams (Angelou et al. 2023). The following analysis is done
on Beams 2 and 4, which have vertical separations ranging from 9 to 71m. Beam 2 makes a
tilt angle θ of 10◦ with Beam 4, while the azimuth angle φ of both beams is 15◦ (see Fig. 6).
We also assume that the low-frequency, 2D part of the flow is homogeneous at all instants in
the vertical direction; the 2D cross-spectrum between the two beams does not depend on the
vertical separation distance Δz and can be described as:
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Fig. 8 Measured and predicted vertical cross spectra a for Period 6 and b for Period 7

χ2D
mn(k1) = cos2 θ(cos2 φF2D

11 (k1) + sin2 φF2D
22 (k1)), (33)

which is also equal to the auto-spectrum. Here we will not discuss the fitting of one-point
spectra of Beams 2 and 4, since the fitting results in almost the same parameters obtained
after the spectra fitting of Beams 3 and 4 (see Table 4). However, we will shed light on
the assumption of flow homogeneity at low wavenumbers by analyzing the cross spectra
between the two vertical beams at different separations. Figures8a, b exhibit the measured
and predicted cross spectra between Beams 2 and 4 for different vertical separations. As
observed from themeasured cross-spectra for both periods (Periods 6 and 7), the cross-spectra
at low wave numbers strongly depends on the separation distance between two beams. We
also investigated the variation in auto-spectra for Beams 2 and 4. If the flow is homogeneous,
these would have the same magnitude. Still, we observed a decrease in the auto spectra with
height, highlighting the flow in-homogeneity in the vertical direction.

The vertical co-coherences for Periods 6 and 7 are shown in Fig. 9. The co-coherences
are plotted as a function of k1, and as expected, the measured co-coherences do not converge
at lower k1 values because of the flow inhomogeneity. This leads to an overestimation of
co-coherence at lower wavenumbers when using the 2D+3D model (see Fig. 9a). For neutral
conditions during Period 7, the low-frequency fluctuations are relatively weaker, so the mea-
sured co-coherence matches more closely with the 3D model prediction. In both cases, the
measured co-coherences drop to 0 for all separations in the high-wavenumber region. While
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Fig. 9 Measured and predicted vertical co-coherences as a function of k1 (a) for Period 6 and (b) for Period 7

in predictions, the co-coherence decay is not as strong for the three smallest separations
i.e. 9m, 14m, and 21m. The underestimation of co-coherences in the measured data can be
attributed to random errors inherent in the LOS velocities obtained from lidar data. These
errors manifest as high-frequency signal noise, detected in the measured auto-spectrum,
ultimately resulting in decreased observed coherences (Angelou et al. 2012).

4 Model Validation with FINO1Meteorological Mast Data

FINO1 is a research platform located in German Bight in the North Sea, approximately
45km north of the island of Borkum. The platform has multiple instruments recording the
meteorological, hydrography, and sea-state parameters. The platform was erected in 2003
and has been recording meteorological parameters at multiple heights ranging from 30 to
100m above sea level. The platform was deployed to provide offshore resource assessment
for wind power projects in the North Sea. Since 2009, many offshore wind farms have been
commissioned in the vicinity, and themeasurements at FINO1 are highly affected by thewake
flow of the neighboring wind farms. For the analysis presented in this article, we selected
the 2 years of data before the commissioning of surrounding wind farms i.e. from Jan 2007
to Dec 2008. During that period, three Gill R3-50 sonic anemometers were mounted at 41.5
m, 61.5 m, and 81.5 m above mean sea level. These sonic anemometers recorded three wind
components u, v, w, and air temperature T at a sampling frequency of 10 Hz. The location
of FINO1 met mast is shown in Fig. 10 with the wind farms commissioned as of 2017. More
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Fig. 10 FINO1 met mast location
in the North Sea and the
surrounding wind farms in 2017.
The surrounding wind farms
were not commissioned during
the period analyzed in this study
i.e. 2007–2008

information about the FINO1 met mast can be found in Riedel et al. (2005); Muñoz-Esparza
et al. (2012).

4.1 Data Processing

The time period analyzed in this study is similar to the study done by Cheynet et al. (2018).
Two years of 10 Hz wind and temperature data from Jan 2007 to Dec 2008 was obtained from
the mast measured at three different heights i.e. 41.5 m, 61.5 m, and 81.5 m. The number
of hours for which the data is available during the 2 years is 16,998h, which corresponds
to about 97% of total hours. Cheynet et al. (2018) processed this data for tilt correction
using the Planar Fit method (Wilczak et al. 2001). Only wind speeds between the cut-in and
cut-out range of modern wind turbines i.e. 4 and 26 ms−1 were of interest in this study.
The hours when the mean wind speed at z=81.5 m occurs outside this range were excluded
from the analysis. About 76% of the data satisfied this condition. Although the recorded wind
components are not disturbed by wind turbine wakes, the mast shadow caused flow distortion
in some directions. The sonic anemometer booms are pointing in the North-West direction
i.e. 311◦ for z = 81.5 m, and 308◦ for z = 61.5 m, and z = 41.5 m. In their study, Cheynet
et al. (2018) selected only wind coming from directions between 190◦ and 360◦. This seems
like a suitable choice, and we also selected the same wind directions in the present study.
After this data-processing step, we are left with only ∼47% of the total data.

In wind turbine load estimation analyses, we assume stationarity of the first and second-
order statistics. There is no standard method to determine the stationarity of a wind time
series, as discussed by Nybø et al. (2019). In the present study, we did not want to apply
a conservative stationarity test that excludes the low-frequency fluctuations since our main
objective is to fit the low-frequency turbulence. Here, we apply a two-step stationarity test
where the first step detects a linear trend in time series (Cheynet et al. 2018; Nybø et al. 2019).
This is similar to the test applied to nacelle lidar data in the previous section. The second
step involves the comparison of the mean and standard deviation of a moving window with
the mean and standard deviation of the whole time series. If the maximum of the means and
standard deviations of all windows exceeds the threshold values, the time series is considered
non-stationary of first-order and second-order, respectively. The choice of threshold and
window length can highly affect the results of this test. In the present analysis, we selected a
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Fig. 11 FINO1 data processing

Table 6 Stability classes

Obukhov length Lo [m] Atmospheric stability Data percentage

−100 < Lo ≤ −50 Very unstable (vu) 6.5

−200 < Lo ≤ −100 Unstable (u) 11.1

−500 < Lo ≤ −200 Near-neutral unstable (nnu) 17.3

| Lo | ≥ 500 Neutral (n) 40.2

200 ≤ Lo < 500 Near-neutral stable (nns) 12.8

50 ≤ Lo < 200 Stable (s) 9.6

10 ≤ Lo < 50 Very stable (vs) 2.3

window length of 10min and the threshold values for mean and standard deviation to be 30%
and 90%, respectively. This ensured that extreme cases of non-stationary data were detected
and excluded from the analysis. Only 523hly time series were detected as non-stationary
through these two tests. A brief overview of the data processing steps is shown in Fig. 11.
About 44.3% of the total data was used in the next analysis.

Before calculating the spectra, the data is divided into different stability classes based on
the Obukhov length L:

L = − u3∗
κK(g/T )w′Θ ′

v

, (34)

where u∗ is the frictional velocity, κK is the von Kármán constant, g is the gravitational
acceleration, T is the reference temperature, andw′Θ ′

v is the virtual kinematic heat fluxwhere
Θv is the virtual potential temperature.We used the atmospheric stability classes suggested in
Gryning et al. (2007). Table 6 describes seven different stability classes from “VeryUnstable”
to “Very Stable” based on Obukhov length L . Here, we utilized the wind components and
temperature recorded at z = 81.5 m to calculate L for every hour (Cheynet et al. 2018). The
resulting stability classes show a distribution slightly skewed towards unstable conditions
as seen in Table 6. The neutral conditions are the most dominant, with 40% of the data
representing such conditions. The very-unstable and very-stable extreme conditions have the
lowest occurrence, both having less than10%share in the total analyzeddata. The contribution
of the rest of the four classes (u, nnu, nns, s) is fairly large, with each class occurring between
∼10 and 20% in the total data.
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4.2 Spectral Analysis

The probability distribution of U at z = 81.5 m revealed that wind speeds between 6 and 14
ms−1 are most commonly occurring. For brevity, the spectral analysis is presented for only
three wind speed ranges: 6–8, 8–10, and 10–12 ms−1. Most modern wind turbines have rated
wind speeds between 10 and 12 ms−1, but the maximum loads and bending moments occur
at below-rated wind speeds when the thrust force is highest. Hence, the spectral analysis of
below-rated wind speeds is of significant importance. Moreover, among the seven stability
classes presented in Table 6, results from only three stability classes i.e. “Unstable (u)",
“Neutral (n)", and “Stable (s)" will be discussed here for conciseness.

Figure 12 displays the measured and fitted spectra k1F(k1) in terms of wavenumber k1
at z = 81.5 m. The spectra are plotted for three wind speed ranges: 6–8, 8–10, and 10–2
ms−1 and three stability classes: u, n, and s. The spectra were calculated for each hour, and
mean spectra were obtained for the number of hours in each classification. Figure12 also
displays the hours utilized to get mean spectra for each plot. From the spectra plots, it is
evident that the number of hours exhibiting neutral conditions increases significantly when
the wind speed is increased from 6–8 to 10–12 ms−1. Before calculating the spectra for
each hourly time series, a spike detection algorithm was applied to remove any potential
spikes in time series data. For the spectra calculation, no linear detrending was applied,
no overlapping segments were used, and no window function was employed. Moreover, the
randomerrorwasminimized by taking the ensemble average of spectra for all hours in a single
class. The measured spectra shown here are two-sided spectra, which means

∫ ∞
0 Fi (k1)dk1

= σ 2
i /2.
The measured u and v spectra have significant low-frequency fluctuations in all three

stability conditions. The spectra in each plot can be divided into three distinct regions:
(1) a low-frequency region where k1 · F(k1) ∝ k−2/3

1 for the u and v components,
while the F(k1) → 0 for the w component (2) a spectral-gap or plateau region where
d(k1 · F(k1))/dk1 ≈ 0, and (3) an inertial sub-range region where k1 · F(k1) ∝ k−2/3

1 and
the transverse v and vertical w component spectra have more energy than the longitudinal
component u spectrum. The spectral gap represents the transition from mesoscale 2D fluctu-
ations to microscale 3D turbulence. The spectral gap is mostly visible in stable cases, where
the 3D turbulence has less intensity than the large-scale 2D fluctuations. This is because 3D
turbulence in stable conditions has smaller length scales, so the 2D fluctuations are easily
spotted, and so is the spectral gap.

The 2D low-frequency and 3D Mann uniform-shear turbulence spectra models are fitted
to the measured spectra, and the four fitting parameters are obtained for each case. The 2D
turbulence scaling parameter c is obtained from F2D(k1) fitting, and the parameters αε2/3,
L3D , and ΓM represent the high-frequency Mann turbulence spectra F3D(k1). ψ is obtained
from (31) for f < 10−3 Hz. The boundary-layer height zi = 500 m is chosen based on the
study by Krogsæter and Reuder (2015). The downhill simplex algorithm (McKinnon 1998)
was applied to minimize the error function, which is described as:

2∑

i=1

N∑

j=1

(
k j · Fi,2D+3D(k j ) − k j · Fi,meas.(k j )

)2

+
N∑

j=1

(
k j · F3,3D(k j ) − k j · F3,meas.(k j )

)2
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Fig. 12 FINO1 measured and fitted spectra at z = 81.5 m for three wind speed ranges and three stability
classes

+
N∑

j=1

(
k j · F13,3D(k j ) − k j · F13,meas.(k j )

)2
, (35)

where Fi (i = 1, 2, 3) is the auto-spectrum of u, v, and w components, respectively, F13
is the co-spectrum between u, and w components, and N is the number of wavenumbers
in estimated spectra after logarithmic bin averaging. There is an overall good agreement
between the fitted and measured spectra for all wind speed ranges and stability conditions.
Although theMann 3Dmodel was originally developed for neutral stratification, here we also
observed a good fit for the stable cases as well, also observed by Peña (2019) and Peña et al.
(2010). A slight mismatch between the measured and fitted spectra is observed in the spectral
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gap of the v component in unstable and neutral conditions. This deviation also translates into
the modeled co-coherences discussed in the next section. In unstable and neutral conditions,
large energy is also observed in thew spectrum at low k values, which is not well represented
by the Mann 3D turbulence model.

4.3 Vertical Co-coherences

The vertical co-coherences between u, v, and w components are evaluated for two vertical
separation distances, Δz = 20 m and Δz = 40 m. The co-coherences are modeled using
both the low-frequency and high-frequency modeled spectra and cross-spectra. Here we also
assume that the low-frequency turbulence is homogeneous in the vertical direction, so the 2D
cross-spectrumwould be the same as the auto-spectrum. For the 3D cross-spectra calculation,
the average of the Mann model parameters at two heights was used. The 3D cross-spectrum
is obtained through the numerical integration:

χi j (k1,Δz) =
∫ ∞

−∞

∫ ∞

−∞
Φi j (k1, k2, k3) exp(−ιk3dz) dk2 dk3, (36)

where Φi j (k1, k2, k3) is the Mann uniform shear spectral tensor and k2 and k3 are wavenum-
bers in lateral and vertical directions, respectively. Figures 13 and 14 display the measured
and modeled co-coherences at Δz = 20 m and Δz = 40 m, respectively. The co-coherences
are plotted as a function of k1Δz. The measured and modeled co-coherences show good
agreement for u and w at all wind speed ranges and stability conditions. The most obvious
mismatch happens in the v co-coherence at the k1Δz values corresponding to the spectral gap
in neutral and stable conditions. In the region where k1Δz < 0.5, representing low-frequency
fluctuations, we observed a strong match between the measured and modeled co-coherences
of u and v, albeit with a slight tendency toward overprediction with increasing Δz. This
can be attributed to the model’s assumption of vertical homogeneity in 2D turbulence, a
simplification that, in reality, isn’t entirely accurate.

4.4 Phase Angles Analysis

Another important parameter is the phase difference between u, v, and w fluctuations at
different heights. The phase difference is a consequence of vertical shear in the surface layer.
This implies that the wind fluctuations in a wind turbine rotor plane can get out of sync with
respect to distance to the surface. The large difference in phase angle can cause increased
fatigue and bending loads on a wind turbine. Previous studies such as Chougule et al. (2012)
have shown that for neutral stratification, ϕv > ϕu > ϕw for k1Δz < 1. Here, we have
plotted measured and modeled phase angles for two vertical separation distances (Δz = 20
m and Δz = 40 m), three different stability conditions (u, n, s), and three wind speed ranges
(see Figs. 15 and 16).

It is apparent fromboth figures thatϕv > ϕu > ϕw for k1Δz < 1 for all stability conditions
and wind speed ranges. A detailed explanation for this effect can be found in Chougule et al.
(2012). For all stability classes and wind speed ranges, we observed higher ϕ values for
Δz = 40 m compared to Δz = 20 m. Furthermore, the large phase angles during stable
conditions are observed, possibly because of the smaller size of eddies and increased shear.
During unstable conditions, there is less vertical shear, and eddies are relatively larger; hence,
the fluctuations at different heights are more in sync. For k1Δz < 0.1, which corresponds
to 2D turbulence, we can observe almost close to zero phase angles for both the model
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Fig. 13 Co-coherences between u, v, and w components between z = 81.5 m, and z = 61.5 m (Δz = 20 m).
Solid lines are measured co-coherences, while dashed lines represent modeled co-coherences

and measurements. This agrees with the assumption of vertical homogeneity for the low-
frequency wind fluctuations.

5 Discussion

5.1 The Effect of Blockage

The Mann Uniform Shear model assumes that one-point cross-spectra of longitudinal and
vertical fluctuations is real, so �(χuw(k1,Δz = 0)) = 0. While this is true for stable and
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Fig. 14 Co-coherences between u, v, and w components at z = 81.5 m, and z = 41.5 m (Δz = 40 m). Solid
lines are measured co-coherences, while dashed lines represent modeled co-coherences

neutral stratification, where the eddies’ sizes are relatively small and do not feel the effect
of the surface, the same can not be said for unstable stratification. Even at z = 81.5m, the
surface constrains the size of eddies during unstable stratification. This can be observed in the
measured χuw(k1) in Fig. 17 where there is a large �(χuw(k1)) during unstable conditions.
This blocking effect can be modeled using the Mann Uniform Shear + Blocking (US+B)
model described by Mann (1994). Compare with Mann (1994) Figures 7b and 10b, where
the quad-spectrum is very small. Here we evaluate the three parameters obtained by fitting
the measured spectra with US and US+B models. Figure 18 illustrates the variation in L3D ,
αε2/3, andΓM for seven stability conditions, threewind speed ranges, and three heights above
mean sea level. One can observe that there is little effect of wind speed range on the value
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Fig. 15 Phase angles between u, v, and w fluctuations at z = 81.5 m, and z = 61.5 m (Δz = 20 m). Solid
lines are measured phase angles, while dashed lines represent modeled phase angles

of L3D , but it decreases significantly with increasing stability in the atmosphere. There is
little variation between US and US+B L3D values for the stable cases, while during unstable
conditions, the variation is quite large. For αε2/3, the US+Bmodel produced almost the same
values as the US model. The αε2/3 values were observed maximum at 41.5 m among the
three heights. Among the stability classes, the highest dissipation was observed in neutral and
near-neutral conditions. For the anisotropy parameter ΓM, the highest values for all stability
classes were observed at 41.5 m. Furthermore, a slight increase in ΓM was observed with
increasing stability. The US + B model produces slightly higher values of ΓM than the US
model. The US model parameters obtained at FINO1 are consistent with the findings of de
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Fig. 16 Phase angles between u, v, and w fluctuations at z = 81.5 m, and z = 41.5 m (Δz = 40 m). Solid
lines are measured phase angles, while dashed lines represent modeled phase angles

Maré andMann (2014) at Rødsand offshore wind farm, and Peña et al. (2010) at the Høvsøre
test site in Denmark.

5.2 Limitations of the 2DTurbulenceModel

Atmospheric stability is one of the factors in determining large-scale wind flow homo-
geneity. Large vertical shear and potential temperature gradients during stable conditions
inhibit mixing and thus can be a source of inhomogeneity. On the other hand, in neutral and
unstable conditions, large mixing length scales are present; thus, the w component exhibits
low-frequency energy as observed in some FINO1 spectra (Fig. 12). This implies that low-
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Fig. 17 Measured u, v, and w spectra, and uw cross spectra at z = 81.5 m for wind speed range 10–12 ms−1

Fig. 18 Mann uniform shear (US) Model and Mann Uniform Shear + Blocking (US+B) Model parameters
obtained through fitting the measured spectra at FINO1
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frequency wind fluctuations may not always be two-dimensional. The model presented here
cannot predict the low-frequency w fluctuations because of its two-dimensional nature.

The low-frequency turbulence model presented in this study assumes flow homogeneity
in the vertical direction. Analysis based on data from FINO1 reveals that the 2D turbulence
model effectively predicts co-coherences and phase angles between fluctuations in the u, v,
and w components at two vertical separations of Δz = 20 m and Δz = 40 m. However,
in certain instances, a minor discrepancy between model predictions and measurements was
observed at low wavenumbers due to flow inhomogeneity. Additionally, there is a slight
mismatch between the model and measurements in the vertical cross spectra measured by
nacelle lidar, particularly for low k1 values (as illustrated in Fig. 8). Hence, it’s worth noting
that this assumption may not hold under certain conditions.

5.3 Effect of Atmospheric Conditions on the 2DTurbulenceModel Parameters

Figure 19 illustrates the variation in the scaling parameters of the 2D and 3D turbulence
models, c and αε2/3, respectively. These parameters are obtained by fitting the measured
spectra from FINO1 for three atmospheric stability conditions: neutral (n), stable (s), and
unstable (u). The parameters are obtained for 1 ms−1 mean wind speed bins ranging from 3
to 25 ms−1, given that there are at least 10h of data available in each bin. There are no data
points for stable and unstable conditions for U > 14 ms−1. From Fig. 19, it can be observed

that αε2/3 increases with the U and this increase is directly proportional to U
2
. The same

was not observed for the 2D turbulence scaling parameter c. For the neutral conditions, c
increases in a slightly linear trend with U . For the stable and unstable conditions, we do not
have enough data points to comment on the trend of c withU . However, we can still observe
for the limited data points that there is a slight decrease in c with increasing U for stable
conditions, while for the unstable conditions, c increases sharply with increasing U .

The other 2D turbulencemodel parameter isψ , which is discussed in detail in the following
subsection. Figure20 shows the change in ψ with the mean wind speed U . The values are
obtained with the same criteria as c and αε2/3. We observed no significant trend in ψ with
respect toU since the values fluctuate around 45◦ mostly. Hence, it can be concluded that the
low-frequency fluctuations at FINO1 are close to isotropic. To gain further insight into the
2D turbulence parameters, low-frequency wind spectra from other sites must be analyzed.
Some general recommendations regarding the usage of this model will be presented in future
studies.

5.4 On the Isotropy in 2DTurbulence

Here, we explore the anisotropy parameter ψ and its influence on 2D turbulence. Figure 20
displays the variation of ψ across different atmospheric stability conditions and wind speeds
for the FINO1 data. ψ is evaluated using (31) for frequencies below 10−3 Hz. The values
remain consistently close to 45◦ at all wind speed ranges and stability conditions. Based
on the low-frequency wind fluctuations model, ψ = 45◦ presents two-dimensional isotropy
where Sv/Su = 5/3. When Sv/Su = 1 the corresponding value of ψ is 37.76◦. Data from
FINO1 shows that Sv/Su > 1 for f < 10−3 Hz in all the cases analyzed here.

Larsén et al. (2013) observed that, for wind measurements at Horns Rev and Nysted
offshore wind farm sites, the average value of Sv/Su is around 0.8 within the frequency
range of 2 × 10−4 Hz < f < 10−3 Hz, but exceeds 1 when f < 2 × 10−4 Hz. A similar
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Fig. 19 Comparison of the scaling parameters of the 2D and 3D turbulence models from the measurements
obtained at FINO1 at z = 81.5m. The absence of data points means the absence of the required amount of
data to avoid uncertainty

Fig. 20 Anisotropy parameter
(ψ) of the 2D turbulence model
measured from FINO1
measurements at z = 81.5m. The
absence of data points means the
absence of the required amount
of data to avoid uncertainty

analysis was made by Larsén et al. (2016), who noted that, at Horns Rev and Høvsøre test site
in Denmark, Sv/Su averaged around 1.25 within the range of 10−5 Hz < f < 2 × 10−4Hz.
In both of these studies, Sv/Su exceeds 1 for frequencies below 2× 10−4Hz suggesting that
2D turbulence at these sites tends to exhibit isotropic behavior as f drops below 2 × 10−4

Hz. Interestingly, at FINO1, we observed a slightly higher average value of Sv/Su when
10−4 Hz < f < 10−3 Hz, averaging around 1.6. This value closely aligns with the isotropic
value of 5/3.

Furthermore, in another study, Larsen et al. (1990) analyzed the low-frequency fluctua-
tions for near-neutral and stable conditions recorded in the Lammefjord experiment. It was
observed that Sv/Su < 1 within the frequency range of 10−4 Hz < f < 10−3 Hz. This
implies that for the onshore sites or near-shore sites, 2D turbulence may not display isotropic
characteristics within the specified frequency range.

Themeasurements fromHywind Scotland showed a different range ofψ : between 25◦ and
35◦ (see Table 4). This indicates that, for all 10 periods analyzed in the data set, Sv/Su < 1
when the frequency is in the range of 10−4 Hz < f < 10−3 Hz. However, the uncertainty
in ψ values obtained at Hywind is quite large and can be attributed to two factors. First,
the available data to evaluate ψ values is relatively limited. Second, determining ψ involves
the reconstruction of u and v components from the LOS measurements with beams mainly
oriented in the x-direction.
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The assumption of scale independence of the anisotropy in 2D turbulence can certainly
be questioned. However, we are aiming for simplicity of the model. The scale-dependent
anisotropy can be observed in the atmosphere at extremely low frequencies irrelevant to
wind energy applications. One example is the inverse energy cascade in 2D turbulence in the
presence of some forcing element. For instance, due to variation in the Coriolis parameter,
the horizontal symmetry breaks down and leads to jet flows in the geostrophic turbulence
which exhibits strong anisotropy at different scales (Galperin et al. 2010). Geophysical flows
such as Rossby waves also show scale-dependent anisotropy because of the earth’s rotation
and can interact with smaller-scale turbulence in a scale-dependent manner (Galperin et al.
2014). An interesting example of scale-dependent anisotropy at large scales can be found
in non-Kolmogorov turbulence, such as optical turbulence that often occurs near the Earth’s
surface, where it is influenced by factors such as temperature gradients, humidity, and wind
shear (Toselli 2014).

A useful tool to visualize the anisotropy in turbulence is the Lumley triangle proposed by
Lumley (1979) and Choi and Lumley (2001). The Reynolds stress tensor can be divided into
an isotropic part and a deviatoric part as:

Ri j = 1

3
Rkkδi j + R′

i j , (37)

where the first term is the isotropic part. In the case of isotropy, R′
i j = 0. The normalized

anisotropy tensor is given by:

bi j =
〈
u′
i u

′
j

〉

tr(Ri j )
− δi j

3
, (38)

where tr(Ri j ) is the trace of the covariance matrix (also equal to twice the turbulence kinetic
energy). The normalized anisotropy matrix b has zero trace and two invariants. The three
eigenvalues are λ1, λ2, λ3 where λ1 + λ2 + λ3 = 0. From Pope (2000), any turbulent flow
can be presented on a η − ξ plane, where η and ξ are the two invariants:

η2 = −1

3
(λ1λ2 + λ2λ3 + λ1λ3) , (39)

and:

ξ3 = 1

2
(λ1λ2λ3) . (40)

Fig. 21 illustrates the anisotropymap of the 2D turbulencemodel. All the possible realizations
of pure 2D turbulence exist on the green curve, where the data point (ξ, η) = (−1/6, 1/6)
represents the isotropic 2D turbulence (ψ = 45◦). As the value of ψ deviates from 45◦ in
either direction, both ξ and η start to increase. The anisotropy leads to the deformation of
the circle into ellipse-like turbulent eddies. When ψ → 0◦ or 90◦, (ξ, η) = (1/3, 1/3) and
the turbulence eddy transforms into a 1D line-like structure. The anisotropy behavior of the
Mann uniform shear model (3D turbulence model) is also compared. (ξ, η) = (0, 0) presents
the point where the statistics of the turbulence eddies is spherical and isotropic. At this point,
the value of the anisotropy parameter ΓM = 0. As ΓM is increased, the sphere-like statistics
turns into a pointed or prolate spheroid. The diamond markers in Fig. 21 are from FINO1
measurements at different mean wind speeds (3 to 24 ms−1) from 1-hr measurements. These
data points are plotted for different stability conditions: n, s, and u. It can be observed that
the measured turbulence is a mix between 2D and 3D turbulence. Most of the data points
are located close to the green curve and have an oblate spheroid shape, which implies that
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Fig. 21 Lumley triangle showing 2D and 3D turbulence anisotropy. On the green curve, data points from the
2D turbulence model are presented (circles). (ξ, η) = (−1/6, 1/6) represents isotropic 2D turbulence with
ψ = 45◦. The triangle markers present data points from the 3D Mann turbulence model where ΓM is the
anisotropy parameter. (ξ, η) = (0, 0) represent isotropic 3D turbulence where ΓM = 0. The diamond markers
present FINO1 measurements at different wind speeds for different atmospheric conditions (n, s, u)

the 2D turbulence is more prominent than the 3D part. It is important to emphasize that the
points will move closer to the green curve (2D turbulence) if we obtain ξ and η from time
series longer than 1-hr since it will include more 2D turbulence.

Stiperski and Calaf (2018) observed that during stable atmospheric conditions over the
land, the turbulence becomes closer to one-component structures i.e. η → 1/3, and ξ →
1/3. They derived these results from sonic anemometer measurements at different height
levels up to 55m as part of the Cooperative Atmosphere-Surface Exchange Study 1999
(CASES-99) field experiment in Kansas, USA. It was noted that one-component turbulence
occurs during weak wind conditions when fluxes are close to zero, and vertical velocity
variance is significantly lower than horizontal velocity variance. This is also marked by
higher buoyancy destruction of turbulence as compared to shear generation in the TKE
budget. Additionally, a correlation was observed between the anisotropy states of turbulence
and the averaging time during stable stratification. Specifically, more isotropic turbulence
structures (three components) were identified when using 1-min averages of data compared
to 30-min averaging periods. These distinct averaging periods were selected to mitigate
the influence of mesoscale turbulence. It is essential to note that in this study, the data
from FINO1 is averaged over a 1-hour period, encompassing both mesoscale turbulence
and three-dimensional turbulence. This prolonged averaging time leads to a higher energy
concentration in the low-frequency turbulence, resulting in a prevalence of two-component
turbulence relative to one-component turbulence. Stiperski et al. (2019) and Stiperski and
Calaf (2023) expanded the analysis to 12 land sites with varying degrees of terrain complexity
and found a similar pattern of turbulence behavior during stable stratification at other sites.
These observations have been instrumental in formulating generalized scaling relationships
in the surface layer by incorporating information on turbulence anisotropy.

6 Conclusions

A model for low-frequency wind fluctuations is introduced, which models the large-scale
and slow-moving fluctuations for the longitudinal and transverse components of the wind
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vector. The model contains a length scale corresponding to the peak of mesoscale turbulence.
An anisotropy parameter is also incorporated in the model, which does not depend on other
atmospheric parameters but rather on the ratio between the spectra of the longitudinal and
transverse components. The model can generate stochastic two-dimensional wind fields,
which are assumed statistically independent of the more detailed three-dimensional wind
fields. These fields could be useful for studying wake meandering in wind farms or dynamic
loads on some types offloatingwind turbines.The2Dspectramodel canbe combinedwith any
3D turbulence spectramodel (here,we use theMann uniform shear spectralmodel) to produce
velocity spectra for awide frequency range.Theone-point spectra and two-point cross-spectra
obtained from the model can be effectively utilized to predict lateral and vertical coherences
for low-frequency fluctuations. Themodel is validated against two datasets: forward-looking,
nacelle-mounted WindIris lidar data from a wind turbine in Hywind Scotland and point
measurements from sonic anemometers at three height levels on the meteorological mast at
FINO1 research platform in the North Sea. Following are the main findings and conclusions
of this study.

• Low-frequency fluctuations of longitudinal and lateral wind components were found
in lidar and point measurements of 1-hr long time series at two offshore sites. These
low-frequency fluctuations represent quasi-2D turbulence as these do not contain strong
vertical wind component fluctuations. The relative strength of the 2D turbulence is
strongest for stably stratified flow. The 2D turbulence is separated from the 3D tur-
bulence by a transition zone called a ’spectral gap’. The width of the spectral gap also
depends on atmospheric stability.

• The 2D and 3D turbulence models were fitted to the measured spectra from lidar LOS
measurements and point measurements. An excellent agreement was found for low-
frequency fluctuations with the model. The model can also fit the spectral gap observed
during stable conditions.

• The lateral and vertical co-coherences estimated from the model showed a very good
agreement with the measurements. Using both 2D and 3D turbulence models improved
the co-coherence prediction for 1-hr long time series, as compared to using just a 3D
turbulencemodel. The improved predictionwasmore prominent in stable conditions. The
model slightly overestimated the vertical coherences against both sets of measurements.

• The phase angles between wind fluctuations at two vertically separated points were also
estimated using the combined 2D+3D turbulence model. It was noted that the model
successfully predicts the order of wind components with respect to changes in the phase
angle. The rate of change in phase angles for the three wind components with the fre-
quency (or wavenumber) was also predicted considerably well.

• The values of the anisotropy parameter ψ obtained through the fitting process of spectra
at FINO1 revealed that the low-frequency fluctuations are close to isotropic (ψ = 45◦)
for the periods analyzed. Theψ values computed at Hywind Scotland showed anisotropy
in low-frequency fluctuations.

The main application of this low-frequency turbulence model includes generating stochastic
wind fields for wind turbine load estimation analysis. As wind turbines continue to grow in
size, we believe this new spectral model would be relevant for predicting large-scale, low-
frequency fluctuations and their impact on loads on wind turbine structures and meandering
of wakes. Future work involves creating a methodology for generating such wind fields and
their impact on wind turbine structural loads and moments.
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Appendix 1: 2D spectra with attenuation at high frequencies

For the attenuated energy spectrum in (27) the isotropic variance σ 2 can be defined as a
function of L2D and z as in (A1). This is obtained by integrating (27) from 0 to ∞:

σ 2 = cL
8
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(A1)

where:

d = L2
2D − z2i
z2i

. (A2)

Integrating the attenuated anisotropic spectral tensor would yield one-dimensional spectra.
The procedure is similar to that described in the Section 2.
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and

F2D
22 (k1) = ck21

(
− z4i a

1
6 L

11
3
2D Γ

( 17
6

)

55
√
2π

(
L2
2D − z2i

)2
bΓ

( 7
3

)
sin(ψ)

(
−9 − 26 2F1

(
−1

6
, 1; 1

2
; p

)

+p2
{
15 − 30 2F1

(
−1

6
, 1; 1

2
; p

)
− 59 2F1

(
5

6
, 1; 1

2
; p

)}

+35 2F1

(
5

6
, 1; 1

2
; p

)
+ 15p3 2F1

(
5

6
, 1; 1

2
; p

)

+p

{
−54 + 88 2F1

(
−1

6
, 1; 1

2
; p

)
+ 9 2F1

(
5

6
, 1; 1

2
; p

)})

− L
14
3
2D√

2b d
7
3 zi sin(ψ)

⎞

⎠ , (A4)

where

a = 1 + 2k21L
2
2D cos2(ψ) , (A5)

b = 1 + 2k21z
2
i cos

2(ψ) , (A6)

p = L2
2D b

z2i a
, (A7)

and 2F1 is a hypergeometric function. The two-point cross spectra χ11(k1,Δy) and
χ22(k1,Δy) for the attenuated energy spectrum in (27) to our knowledge do not have any
analytical solution but can be obtained through numerical integration techniques.

Appendix 2: Combining low-frequency fluctuations model with a 3D
turbulencemodel for nacelle lidar measurements

For the 3D spectra, we choose the Mann spectral tensor model (Mann 1994), which was
originally developed for purely neutral conditions and was applied to point measurements at
a certain location. Herewemodify the one-dimensional spectrum obtained from the 3DMann
spectral tensor since we do not have point measurements from lidar but rather a weighted
average of the LOS components along the beam. Due to a non-zero azimuth angle of the lidar
beams, the lidar is not measuring the u-component of the wind vector, rather it measures the
LOS component. The LOS obtained from a single beam of lidar can be expressed (Held and
Mann 2019) as:

vr (x) =
∫ ∞

−∞
ϕ(s)n · u(n(d f + s) + x)ds , (A8)

where n is a unit vector along the direction of the beam, d f is the distance from the instrument
to the center of the range gate, s is the distance along the beam from that center, and ϕ is a
weighting function that represents the filtering induced due to the probe length. The spectrum
of the LOS measurements can be modeled as (see Mann et al. 2008):

Fvr (k1) =
∫∫ ∞

−∞
|ϕ̂(n · k)|2 niΦi j n j dk2dk3 . (A9)
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Here ϕ̂ is the Fourier transformof theweighting function.We choose aGaussianweighting
function given by:

ϕ(s) = 1

lavg
√
2π

exp

(

− s2

2 l2avg

)

, (A10)

where lavg is the averaging length and is related to the probe length or FWHM of the lidar
by:

lavg = FWHM

2
√
2 ln 2

. (A11)

Here we assume that the FWHM of the WindIris is 30m, so lavg is about 13m. Similarly,
the cross-spectrum of two LOS measurements by two beams having unit vectors m and n at
distance d f is given by:

χmn(k1) =
∫ ∫ ∞

−∞
ϕ̂(m. k)ϕ̂∗(n. k)miΦi j (k)n j exp(ik. (m − n)d f )dk2dk3 . (A12)

We can now combine the low-frequency spectral tensor, φi j and the high-frequency tur-
bulence Mann spectral tensor Φi j to get:

Ψi j (k) = Φi j (k) + φi j (k1, k2) , (A13)

where the last term is zero if either i or j is 3.
The spectra and cross-spectra measured by the WindIris are not quite in the x-direction

but the are measured in two directions described by the unit vectors m and n. Held and
Mann (2019) shows how to use the three-dimensional spectral tensor to calculate spectra and
cross-spectra observed by the lidar for any configuration of beams. Here we will see how to
combine the analytical expressions for the 2D turbulence model to get spectra. These do not
need to consider the effect of averaging because they have almost all energy at the lowest
frequencies. The 2D auto-spectrum for a unit vector m, where m3 is not necessarily zero, is:

F2D
m (k1) = mi F

2D
i j (k1)m j = m2

1F
2D
11 (k1) + m2

2F
2D
22 (k1) . (A14)

Now we can combine the 2D and 3D one-point spectra by simply adding the respective
terms:

Ftotal(k1) = F2D(k1) + F3D(k1) , (A15)

using (A3) and (A4) for the first term, and (A9) for the second term which can be solved by
numerical integration (see Held and Mann 2019)).

The cross-spectrum, assuming that the beams are measuring at the same upwind distance
is:

χ2D
mn(k1,Δy) = miχi j (k1,Δy)ni , (A16)

and if n2 = −m2 then this reduces to:

χ2D
mn (k1,Δy) = m2

1χ11(k1,Δy) + m2
2χ22(k1,Δy) . (A17)

Now the total cross-spectrum can be evaluated by just adding the 2D and 3D terms:

χtotal(k1,Δy) = χ2D(k1,Δy) + χ3D(k1,Δy) , (A18)

where both 2D and 3D terms can be obtained using numerical integration.
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